News

Campus Shutdown Notice

In light of the ongoing coronavirus (COVID-19) situation, we have decided to close our administrative offices starting Monday, March 16, 2020 until further notice.  Cory and Soda Hall are closed.  Classes are being held remotely.  All events in Cory and Soda Halls will either be cancelled or held remotely, and staff will be working remotely during this time.

New wearable device detects intended hand gestures before they're made

A team of researchers, including EECS graduate students Ali Moin, Andy Zhou, Alisha Menon, George Alexandrov, Jonathan Ting and Yasser Khan, Profs. Ana Arias and Jan Rabaey, postdocs Abbas Rahimi and Natasha Yamamoto, visiting scholar Simone Benatti, and BWRC research engineer Fred Burghardt, have created a new flexible armband that combines wearable biosensors with artificial intelligence software to help recognize what hand gesture a person intends to make based on electrical signal patterns in the forearm.  The device, which was described in a paper published in Nature Electronics in December, can read the electrical signals at 64 different points on the forearm.  These signals are then fed into an electrical chip, which is programmed with an AI algorithm capable of associating these signal patterns in the forearm with 21 specific hand gestures, including a thumbs-up, a fist, a flat hand, holding up individual fingers and counting numbers. The device paves the way for better prosthetic control and seamless interaction with electronic devices.

Jake Tibbetts wins Bulletin of the Atomic Scientists’ 2020 Leonard M. Rieser Award

EECS grad student and alumnus Jake Tibbetts (B.S. EECS/Global Studies '20) has won the Bulletin of the Atomic Scientists’ 2020 Leonard M. Rieser Award.   Winners of the award have published essays in the Bulletin's Voices of Tomorrow column, and are selected by the Bulletin’s editorial team for recognition as "outstanding emerging science and security experts passionate about advancing peace and security in our time."  Tibbetts received the award for his article “Keeping classified information secret in a world of quantum computing,” published in the Bulletin on February 11, 2020.  “In his piece, Jake Tibbetts accomplished the kind of deep, thoughtful, and well-crafted journalism that is the Bulletin's hallmark," said editor-in-chief John Mecklin. "Quantum computing is a complex field; many articles about it are full of strange exaggerations and tangled prose. Tibbetts' piece, on the other hand, is an exemplar of clarity and precision and genuinely worthy of the Rieser Award.”  Tibbetts is a fellow at the NNSA-supported Nuclear Science and Security Consortium, and has previously worked as a research assistant at the LBNL Center for Global Security Research.  He has made contributions to the Nuclear Policy Working Group and the Project on Nuclear Gaming at Cal, and made the EECS news last year for his involvement in creating the online three-player experimental wargame "SIGNAL," which was named the Best Student Game of 2019 by the Serious Games Showcase and Challenge (SGS&C).  The Rieser Award comes with a $1K prize.

New "spin-orbit torque" switching technique breaks magnetic memory speed record

EECS Chair Jeffrey Bokor is among an international team of researchers who have published a paper in the journal Nature Electronics that describes a new technique for magnetization switching — the process used to “write” information into magnetic memory — that is nearly 100 times faster than state-of-the-art spintronic devices. The advance could lead to the development of ultrafast magnetic memory for computer chips that would retain data even when there is no power.  In "Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses," researchers report using extremely short, 6-picosecond electrical pulses to switch the magnetization of a thin film in a magnetic device with great energy efficiency. A picosecond is one-trillionth of a second.  The project began at UC Berkeley when Jon Gorchon, now a researcher at the French National Centre for Scientific Research (CNRS) working at the University of Lorraine L’Institut Jean Lamour in France, and Richard Wilson, now assistant professor of both mechanical engineering and materials science & engineering at UC Riverside, were postdoctoral researchers in Bokor’s lab.

"Extreme MRI" chosen as ISMRM Reproducible Research pick

"Extreme MRI: Large‐scale volumetric dynamic imaging from continuous non‐gated acquisitions,” a paper by EECS alumnus Frank Ong (B.S. '13, Ph.D. '18) and his advisor, Prof. Miki Lustig, has been chosen as October's Reproducible Research pick by the International Society for Magnetic Resonance in Medicine (ISMRM).  The paper, in which the researchers attempt to reconstruct a large-scale dynamic image dataset while pushing reconstruction resolution to the limit, was chosen "because, in addition to sharing their code, the authors also shared a demo of their work in a Google Colab notebook."  Lustig and Ong, now a research engineer at Stanford, participated in a Q&A in which they discussed how they became interested in MRI, what makes Extreme MRI "extreme," the culture and value of open science, and why Lustig's grad school paper on compressed sensing became the most cited paper in MRM.  ISMRM is an international nonprofit association that promotes research development in the field of magnetic resonance in medicine to help facilitate continuing education in the field.

Victor Han selected runner-up for ISMRM I.I. Rabi Award

Third year EECS PhD candidate Victor Han (advisor: Prof. Chunlei Liu) was selected as a finalist for the International Society of Magnetic Resonance in Medicine (ISMRM) I.I. Rabi Young Investigator Award for original basic research.  He was chosen for his paper entitled “Multiphoton Magnetic Resonance Imaging,” in which he developed a novel technique that excites multiphoton resonances to generate signal for MRI by using multiple magnetic field frequencies, none of which is near the Larmor frequency. Only the total energy absorbed by a spin must correspond to the Larmor frequency. In contrast, today’s MRI exclusively relies on single-photon excitation. He was named runner-up at the ISMRM annual conference in early August.  Han will continue to develop his multiphoton technique and is exploring its applications in medicine and neuroscience as a part of his PhD dissertation research.  The ISMRM is a multi-disciplinary nonprofit professional association that promotes innovation, development, and application of magnetic resonance techniques in medicine and biology throughout the world. 

Ava Tan wins DRC 2020 Best Paper Award

EECS graduate student Ava Jiang Tan (advisor: Sayeef Salahuddin) has won the 2020 Best Paper Award at the 78th Device Research Conference (DRC) for "Reliability of Ferroelectric HfO2-based Memories: From MOS Capacitor to FeFET."  The paper, co-authored by Profs. Salahuddin and Chenming Hu, grad student Yu-Hung Liao, postdoc Jong-Ho Bae, and Li-Chen Wang of MSE, introduces nonvolatile ferroelectric field-effect transistors (FeFETs) which boast impressive programmability and a strong potential for further scalability.  The paper also demonstrates for the first time a systematic, reliable, and rapid method to qualitatively predict the FE endurance of prospective gate stack designs prior to running a full FeFET fabrication process.  Tan works in the Laboratory for Emerging and Exploratory Devices (LEED), and is particularly interested in the architectural potential of nonvolatile ferroelectric CMOS-compatible memories for realizing brain-inspired computing paradigms and energy-efficient hardware for deep learning. The DRC, which is the longest-running device research meeting in the world,  was held in June.

Payam Delgosha wins 2020 IEEE Jack Keil Wolf ISIT Student Paper Award

EECS grad student Payam Delgosha is a winner of the IEEE Jack Keil Wolf ISIT Student Paper Award at the 2020 IEEE International Symposium on Information Theory (ISIT), which was held as a Zoomference on June 21 -26, 2020. Payam won the award for his paper "A universal low complexity algorithm for sparse marked graphs" co-authored with his research advisor Venkat Anantharam.  This award recognizes outstanding papers on information theory for which a student is the principal author and presenter. Delgosha earned his B.S. and M.S. degrees from Sharif University of Technology, Iran.  He plans to join the  University of Illinois at Urbana-Champaign as a research assistant professor of computer science in Fall 2020.

Introducing the world’s thinnest, most efficient, broadest band, flat lens

EECS Assoc. Prof. Boubacar Kanté, his graduate students Liyi Hsu, Jeongho Ha and Jun-Hee Park, postdoctoral researcher Abdoulaye Ndao, and Prof. Connie Chang-Hasnain, have demonstrated a revolutionary, ultrathin and compact, flat optical lens that spans wavelengths from the visible to the infrared with record-breaking efficiencies.  Their paper, “Octave bandwidth photonic fishnet-achromatic-metalens,” published in Nature Communications, is the first time a photonic system with the entire rainbow has been proposed and demonstrated with efficiencies larger than 70% in the visible-infrared region of the spectrum.  Attempts to make traditional lenses flatter and thinner, so that they can be deployed in increasingly smaller applications, have been hampered by the way that lens curvature and thickness are used to direct light.  The Fishnet-Achromatic-Metalens (FAM) utilizes a complex “fishnet” of tiny, connected waveguides with a gradient in dimensions, which focuses light on a single point on the other side of the lens, regardless of the incident wavelength.  As the world’s thinnest, most efficient, and broadest band, flat lens, its use in applications like solar energy, medical imaging, and virtual reality, is just the beginning.  As Kanté explains, “We have overcome what was regarded as a fundamental roadblock.”  One idea for a possible implementation would be to integrate the miniature lens into microrobots being developed at the Berkeley Sensor & Actuator Center (BSAC).

Paper by Peter Mattis to be presented at ACM SIGMOD conference

A paper co-written by EECS alumnus Peter Mattis (B.S. '97) is being presented at the 2020 Association for Computing Machinery (ACM) Special Interest Group on Management of Data (SIGMOD) International Conference on Management of Data this month.  The paper, titled "CockroachDB: The Resilient Geo-Distributed SQL Database," describes a cloud-native, distributed SQL database called CockroachDB, that is designed to store copies of data in multiple locations in order to deliver speedy access.  The database is being developed at Cockroach Labs, a company co-founded in 2015 by a team of former Google employees that included Mattis, who is also the current CTO, and fellow-alumnus Spencer Kimball (CS B.A. '97), currently the company CEO.  Cockroach Labs employs a number of Cal alumni including Ceilia La (CS B.A. '00) and Yahor Yuzefovich (CS B.A. '18).

Enabling robots to learn from past experiences

EECS Prof. Pieter Abbeel and Assistant Prof. Sergey Levine are developing algorithms that enable robots to learn from past experiences — and even from other robots.  They use deep reinforcement learning to bring robots past a crucial threshold in demonstrating human-like intelligence: the ability to independently solve problems and master new tasks in a quicker, more efficient manner.  An article in the Berkeley Engineer delves into the innovations and advances that allow Abbeel and Levine help robots make "good" choices, generalize between tasks, improvise with objects, multi-task, and manage unexpected challenges in the world around them.